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ABSTRACT

Let the signal and noise processes be given as solutions
to non-linear stochastic differential equations. The optimal filter
for the problem, derived elsewhere, is usually infinite dimensional.
Several methods of obtaining possibly useful finite dimensional approximations
are considered here, and some of the special problems of simulation
are discussed., The numerical results indicate a number of useful
features of the approximating filters and suggest methods of im-
provement. The paper is concerned with problems where the noise
and non-linear effects are much too large for the use of 'lineariza-

tion' methods, (which at least for the simulated problem, was useless).




1. INTRODUCTION,., This paper is concerned with the problem of finite-

dimensional approximations of optimal filters for a large class of
non-linear, large-noise and continuous time problems. The truly
optimal filters, as given in [1],[2] are infinite dimensional except
for a few special cases (e.g.; the usual Gaussian-linear [3] problem
and certain problems where the state space of the signal process has
only finitely many points [4],[5]). A physical realization of the
exact non-linear filter is impossible., The paper discusses an inter
esting approach to a finite approximation, which seems to preserve
some of the important qualitative properties of the optimal filter.
Using some qualitative properties of the optimal filter, the procedure
gives canonical forms for the approximations. A certain amount of experi-
mentation and guesswork is required to select a specific filter.

The approximations are hard to evaluate theoretically, but
versions are compared numerically. Although a numerical comparison
of statistical filters does not always provide enough information
to determine the 'better' one,it may point out some of the possible
sources of difficulty, methods of improvement, or desirable properties.

The filters, as described herein, are probably far from
ideal. It must be emphasized that in the problems considered the
interaction between the non-linearities and the noise is sufficiently
important for 'linearization' to be useless (or so it appears from
the simulations). The filters can undoubtly be improved, but this

appears to be the first work in which a systematic attack is attempted



for the class of signal and noise processes which are considered.
As shown by £he numerical results, the filters do seem to 'work',
and it is indeed unfortunate that there are no other methods with
which to compare the results. Given any specific filtering problem,
the method is to experimentally (theoretically, where possible)
compare several filters suggested by the procedure of the paper.

Since the development requires some published results,
which, regrettably, are not sufficiently well known, backgroud material
is given in Sections 2 and 3. The optimal filter is discussed in
Section h, and the approximations, etc., in Section 5 and on. It
should be understood that the work is exploratory, hoping to help
expose and clarify some of the specific and difficult problems in
the realization of non-linear continuous time filters.

Notation. Throughout the paper time indices are omitted
when no confusion should arise, and the same symbols are used for
the approximations to conditional moments, and for the conditional

moments themselves.

2. THE SYSTEM MODEL. The importance of state variable representa-

tion in control theory, suggests that the model for the signal pro-

cess include at least special cases of the form

(1a) ' = f(x,a)

where Q is a Markov process, say, a Gaussian process with




correlation exp-p|t|. Such an ay is the unique solution to the

stochastic differential (Itd) equation

(1b) da = -Badt + dz

where Zy is a Wiener process (2t is formal Gaussian 'white noise').

The exact model is the stochastic differential equation

(2) dx = f(x)dt + v(x)dz

where the components of z, are independent Wiener processes and
E(zt-zs)(zt-zs)' = I|t-s]. Equation (2) is meant to imply that Xy
is a process satisfying

t t
(2a) X=X, = ) f(xs)ds + [ v(xs)dzS

where the latter (stochastic) integral, is given a precise interper-
tation by Itd [6],[7]1,[8]. The model (2) is extremely versatile; it
is the subject of a large literature, and under broad conditions, the solu-
tions are Markov processes. For more detail see [6],[7],[8], or the
introduction to [9].

To anticipate questions in the sequel concerning the compu-

tation of the sample paths of equations such as (2), the following



brief and formal discussion of gsome known results is included.
. . . A
Z = -
Define o N Zt+A Zt for fixed A > 0. Define the process q_t
which equals q . in the t interval [nA ,(n+l)4d) where q =X

o
and

(3) Uns1)a = Ta * )2+ W) (2(00) 4200

A .
q X (in mean square) as A - 0. If v depends on x, then the

limit (as A -0) of rf where, analogous to (3),

(%) F(n+1)a = Tna * f(rnA) A+ v(rnA)(Z(n+l/2)A_ Z(n-l/Q)A)

is not necessarily the limit of qf. The basic reason is that,
loosely speaking, dz, = O(\/_A) (E6zt6z% = 0(4)) and, hence x, =

t
O(\/—A). In (3), v(q 2) is independent of its coefficient SZnA;

but in (&), v(rnA) is not necessarily independent of its coefficient.
In fact the expectation of the last terms of (3) and (U4) are zero

and O0(4), respectively. These O(4) terms may add to give a sig-
nificant difference between the limits of (3) and (4) (as A -0).

(See the excellent work in [10],[11],[12],[13],[14] for more details*.)

(3) and (4) have the same limits (in mean square) for coefficients

¥*
Although only [10],[11] are rigorous, [12] and [13] are quite
plausable,




given by (1).

Suppose now that the signal process is the scalar process

n
Yo where
.n n n, .n
(5) ¥ o= £(y7) + v(y)eE
where gz is a Gaussian process with a relatively flat spectrum in

the set (-n,n) and where ftgzds Eézt (in a suitable sense). (In

this case, £ 1s continuous, and yz is the limit of either sequence

t

(as A—=0) (3) or (4), where anEst replaces z As n -

1

né§)
y: does not necessarily converge to Xy if v depends on x.
However, (see [10],[11],{12],[13], for details) there is another

stochastic equation

(6) ax = (f(§)+v(;)vx(§)/2)dt + v(;)dz

so that yi - % . The term vvx/2 in (6) accounts for the effects
of the o{4A) terms previously mentioned.
On the other hand, suppose that an approximation to

a sample path of the stochastic differential equation (7) is desired
(7 dx = £(x)dt + B(x)dz

but, instead of 2z , only a wide (but finite) bandwidth Gaussian

N i
function ¢, 1is available, where ) Eds m 2 Then, the above

to



argument implies that the solution of
(8) y = f(y)-ByB/2 + B

approximates the solution of (7), in a suitable statistical sense.
Now define the function q with values (z(n+l)£;znég/a
in the t interval [nA ,(n+l)A). Then the solution of the

ordinary equation
(9) y = £(y)-BB/2 + Bq

is an approximation to (7) and E(xt-yt)2 = o(A)[13].

Now let =

% be a vector valued Wiener process and

t
J tds a band-width 'n' approximation to ; the components of each

Z:3
are supposed independent. Then [13] +the solution of the ordinary

equation

(10) Vs

1 =5 -5 LB 0B /2y + LB

Jyk J

€5 s 1= L

is an approximation (E(yt-xt)'(yt-xt) = 0(1/n), [13]) to the

solution of the stochastic equation

ll . = 1 =
(11) dx, fi(y)dt+§Bijdzj , i1=1,...




For more detail, see the cited references. These results
will be helpful in describing the numerical techniques required in

the simulation of the approximate filters,

3. THE OBSERVATION MODEL. While the well known linear, continuous

time, Kalman-Bucy [3] filter theory can handle a more practical class
of signal processes than can the Wiener linear filter theory, the
observation noise for the former is restricted to white Gaussian™»™"
(not necessarily stationary), while the observation noise for the
latter** must only be stationary Gaussian. The restriction on the
observation noise seems to be, at present, an unavoidable aspect

of the state variable formulation. It is supposed here that the obser-

vation is the vector process given by

dy = g(x,t)dt + odw
(12) t t
Vi = fog(xs,s)ds + [OosdwS ,

where o does not depend on x, 0o0' = Z, a positive definite
matrix at each t, and Wy is a vector of independent Wiener process;

E(Wf'ws)(wt-ws)' = I| t-s| . Formally w is white Gaussian noise.

*

"whiteness' is always necessary for the exact optimal filter to be
realizable with causal elements.
*%

Gaussianess 1s required for the filter output to be a version
of the conditional mean, as opposed to being merely the best linear
estimator in the mean square sense.



For simplicity, suppose that w, is independent of =z As

t t°
suggested by the remarks in Section 2, and in the section on computa-
tion, the filter may be modified to provide an approximation when

W in (12) is replaced by a wide band Gaussian process.

4, THE OPTIMUM FILTER. Some previous results will be described

briefly and formally, Write Eth(xt) for the conditional expectation
E[h(xt)|ys, s £ t] and, supposing that there is a conditional density,

write P(x,t)dx = P(xt is in [x,x+dx)|ys,s £ t). Write {vij]= viv=V

and
2
0 1 0
L=2Lf, e— Z v, .
i 1 ox; tz 1,3 Vi Bxiaxj
Then
(13) a(E'n(x,)) = E"In(x,)at + (dy-E'gat)' L (E gh-E eE"n)
* t -1 t

(14) aP(x,t) = L P(x,t)dt + P(x,t)(dy-E gdt)'2Z (g-E g)

where dy = gdt + odw and L¥* is the formal adjoint of L;

L*p = - (£,P), + -;- Z (v 3By o
i i '

i,J ivJ

Note that 4P L*Pdt is Kolmogorov's forward equation for the




evolution of the density of (2). Under reasonable conditions on
h,f, 2, g and V, (13) is rigorously derived in [2]. (14) is
formally derived in [1]. (13) implies that (a version of) the
conditional expectation Eth satisfies a stochastic differential
equation. (14) is a 'partial' stochastic differential equation®.
The usual equations for the linear-Gaussian filter are a special
case of (13).

Equation (15), derived from (13) and (14) in Appendix 1,
will be useful. The version for scalar x and y is written, since
it is to be used only for illustrative purposes. Until mentioned
otherwise, define m =m_ = E'x, and m,, =m o= Et(xt-mt)i; then

t t t

2
dm = Etf(x)dt + (dy-Etgdt)(Etgx-Etg-m)/o

dm, = [-imi_lEtf(x)+EtL(x-m)i]dt +
(15)

e o) -
+ -l-g [i;-}l mi_g(Eth-Etg-m) -1(E"ex-E am)E* (g-Eg) (x-m) "~ lat
(0]

t
dy-E gdt).., t t t t i
+ (—yrg—l[_lmi_l(E gx-E gm)+E (g-E g)(x-m)"].

g

*The work [2] appears to be the first rigorous treatment of the
continuous time non-linear filter. The work [1l] was independent
of the prior work [15], whose results are not consistent with the
It6 calculus. See [12] for a recent discussion of this point. For
other results, precise in a state space with only a finite number
of points, and formal otherwise, see [4],[5],[12],[15],[16]. The
mathematical work [17] discusses a related problem.
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The operator L acts on x only.

At least formally (and rigorously under specified con-
ditions [2]), both (14) and (13) represent the truly optimal non-linear
filter. The sets (13) and (15)(for the scalar or vector case),

seem easier to work with and we will concentrate on them.

5. THE PROBLEM OF PHYSICAL REALIZATION OF THE OPTIMAL FILTER.

Until mentioned otherwise, we let the system and observation be
scalar. Also,suppose that the sample paths of Xy s given by
dx = f(x)dt+v(x)dz, are computable (or suitably approximateble)
if the sample paths (or suitable approximations) of z, Were

available. (The lutter supposition will be treated subsequently.)

Let g = x, and 5 = o°. Then (15) becomes
(16) dm = Etf(x)dt + (dy-mdt)m2/02
(17) am, = [2E"(x-m)£(x)+E"v /"] dt+(dy-mdt)m3/02.

If f is linear, P(x,0) Gaussian, and v2 does not depend on x,
then it is easily verified that myy = 0 and (16),(17) reduce to the usual
Kalman-Bucy filter for the scalar case with uncorrelated system and
observation noise. Then, the only dependent variasbles in (16) and (17)
are m and m,, and the two equations can be solved for m, and My, -

In general, (16) and (17) involve ﬂﬁﬂ,ﬁ%»@ﬂﬂ,
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m3 and Etve. If £ and v are polynomials, then the right sides
of (16) and (17) contain mz,... and, hence, cannot be solved for
m, and Moy s unless Wypse+e 5 BTE known. In the polynomial case,
(15) becomes(still g = x for simplicity)

2
(18) dm, = Fi(m,...,mi+N)dt + Ki(m,...,mi+N)dt/c

2
+ (dy-mdt)G,(m,...,m, )/o
i i+N

where Fi depends on the dynamics of x and the other terms are

t’
due to the observations; i.e., in general, the moments are 'given'
by a coupled infinite system of stochastic differential equations.

A further difficulty with (18) is that (unless Ixtl £ 1 w.p.l.)

m,, —o gas 1 -

it . In any case, (18) cannot (unless it reduces

to a finite problem, as in the linear-Gaussian case) be realized
by a finite system.v

The approximation of the first n equations of (18) by
an n-dimensional system (in n variables, say m, My ooy, and
the observation term (dy-mdt)), which may be termed the 'closure'

problemf, is the subject of the sequel**.

The term is taken from certain branches of physiecs. Typically, a
partial differential equation, such as Boltzman's equation, is given,
and an infinite set of coupled differential equations for the moments
are derived. Various schemes have been proposed for the truncation
of the infinite system, while having the solution of the resulting
finite system preserve scme desirable property of the true moments.
See [18]1,[19],[20]. Unfortunately, the techniques in these references
shed little light on the filtering problem.

**There are a variety of expansions, based on either orthogonal
systems -- or complete systems of functions and a Galerkin-like
procedure. These appear to require far too large an approximate
filter to be of use,



6. LINEARIZATION AND ITS SHORTCOMINGS. It appears that previously

suggested approaches to the closure problem for various non-linear
filters involve various forms of power series expansions and truncations
[21],[22],[23]. Essentially, this is equivalent to setting m, = o,

for i greater than some n. A typical version of the procedure
follows (for the scalar case of the last section and v2 independent

of x). Write
~ 1 2
(19) f(x) = f(m+(x-m)) T £f(m)+(x-m)f* (m)+ §(x-m) "' (m)

and Etf(x) - f(m)+m2f"(m)/2 (with or without the last term) and

Et(x-m)f(x) ~ mef'(m), My =M = ... = O. Then

dm % f(m)dt+m, " (m) at/2+( dy-mdt)m2/02
(20)

~ 2 2,2
dm, ~ (2m,f* (m)+v -mg/c )at ,

the usual result of linearization (with or without the f" term).
When f" is 'small’, v =0 and m, not large, then the
error process X, -m, (due to (20)) may possibly converge to zero, Short-

comings of (20) are evident for truly non-linear problems; (19) is not
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even a Taylor series with remainder (then the last term would be
(x-m)2f"(§)/2, where € € [m,x] and a random variable), and it is
easy to construct meaningful non-linear problems where (20) is
useless (the example of Section 13).

A comparison of the structure of (16) and (20) is
interesting. The properties of (20) are very sensitive to the
properties of f at the current estimate m. If f is a function,
such as (1+€ sin bx)x for large b and small €, then (for not
sufficiently small m2) (20) will exhibit 'large' undesirable
oscillations™. In this case f" is not negligable, and perhaps
no formal power series and truncation will be useful. (20) is just
too sensitive to f" and f' +to be of use except when f" is
small over a sufficiently large region. The linearization method
is even more questionable if m is not sufficiently close to the
conditional mode, or if the variance of the estimate is large, in
which case the sensitivity of the filter to the local structure of
f should be small.

Now examine (16). The differentiations in (20) are re-

placed by a local smoothing or averaging of the dynamics about the

*The local structure of f in the example may not be typical, never-
theless, the concern here i$ with the general problems of a non-linear
theory, which. would, hopefully, be useful on problems which are not
'nearly' linear.



1k

estimate. The terms

(21) ' (mmy/2 , myf*(m)

are replaced by

(22) J(£(x)-f(m))u(dx,t) , [(x-m)f(x)u(dx,t)

where u(-+,t) is the conditional measure of X, (u(dx,t) = P(x,t)dx
if a density exists). The smoothing operation (22) is opposed to
the unsmoothing operation (21).

This distinction between smoothing (or averaging of
dynamics), and unsmoothing is one of the salient distinctions be-
tween the exact and the 'linearized! procedures. The approximations

of the sequel are devised to retain this property.

7. APPROXIMATION TO THE OPTIMAL FILTER 1: ASSUMED CONDITIONAL PROBABILITY

DENSITY. Suppose the form (18) temporarily. Generally, a
finite system approximation to the system (18) requires some sort

of substitution Wi(m,mg,...,mh) for m

., 1=1,... . (Linear-
n+i’ ? (

ization sets Wi = 0.) Motivated by the previous remarks concerning

the smoothing effect of the Et operation in (18), several types of

substitutions will now be suggested.

First pick an n parameter probability density ?(x,m,mg,---,mh)o
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Then, suppose, arbitrarily, that at time t, P is the conditional

Then the terms Etg, Etf, m

density of x WCEERE

£ can be computed
immediately from P, and m . =W, (mym,,...,m ) for a known W,.

Under this supposition, either (13) and (15), (16) or (18) becomes

a system of n equations in n unknowns, and can be solved.

Note that Et is replaced by a local averaging operation.

Set n =2, consider equations for m and m, only,
and let 5(x,m,m2) ='(2vm2)-l/2exp-(x-m)2/2m2. Then odd moments
m, ., are replaced by zero, my by BmS, mg by l5mg , ete.

The choice of P is, of course, important, and a generally
satisfactory algorithm for choosing it in any given problem is not yet
available, Let Et correspond fo integration with respect
to P. P should retain the important qualitative properties of
the true P; for example, considering its method of use here,
the qualitative effects of Etg, etc., on the approximations ,

should be similar to those of Etg, etc., on the true estimates.
Actually, a primary concern was with T forms that are easy to
compute with, While_still providing useful filters.

From another point of view, linearization is equivalent

to the replacement of P(ih Et) by a function P which is not

a probability density. While this may work in some 'nearly linear'

cases, it could often be disastrous.
Appendix 2 contains some further discussion of the relation

between the meaning of the estimates, and the form of 5.
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EXAMPLE, The general principle is illustrated by the trival case
% = cos x, g = x and where P is the uniform density, B = 1/2A
in [m+A,m-A] and O outside, where A ='~/3m2 . The exact equations

are

2
dn = E'cos xdt+(dy-mdt)m,/o

dm, = [2Et(x-m)cos X - m§/02]dt + (dy—mdt)m5/02.

The approximations require Et replacing Et and m3 =0 (by symmetry).
Let the true initial m, be large, then, under reasonable con-

ditions on P(x,0), the immediate effects of the dynamics, represented
by Etcos X, etc. are small compared to the effects of the observation
on the estimates. ﬁt accomplishes this, and, as the estimate of

m, decreases, the effect of the dynamics on the estimate of m

increases. For 'very small' m,, the equations reduce to those

of linearization.

8. A RESULT ON MOMENT SEQUENCES. The sequence Sy = (mym, . 0., my)

is said to be a moment sequence if there is a non-decreasing

function oft), with oa(-») =0, afw) = 1 and

m = [xda(x) = 0

[xda(x) = m, .
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Set m =0 here. If m#0, o is shifted to the right m

units. Clearly, an aim of Section 7 is to replace L by

functions Wi so that m,,...

5 )M, Wi,... is a moment sequence.

1

Given S., or S _, the question of the existence of such an a(x)

N)
is the classical Hamburger moment problem [24],[25]. Necessary

and sufficient conditions on S or §_, are [24]

(23) L om, 588 >0

i, J
for all ¢ with positive norms (EE is the complex conjugate of
gj). Alternatively, the positive definitness of (23) is implied if

the principal minors of (24) are positive

1 0 m, o
(2k) 0 m, mg

2 2
>0, m >m, m > m /m,

Replacing > by 2 in (23) yields an «o which changes at

possibly only a finite number of points.

9. APPROXIMATION TO THE OPTIMAL FILTER 2: MOMENT SEQUENCES. If

my,...,M are given, then (24) gives conditions on WL 1re ety



18

so that Sy is a moment sequence: (24) gives all allowable

substitutions for Mg 419 sy

Except for a few special cases, it is hard to find useful
forms P which depend on only n moments. (Eh) characterizes all
such 5, and each moment sequence corresponds to some local smoothing.
A method of choosing the proper sequences W o,12e? is discussed
in connection with the numerical example. Generally several members
of a suitable family of sequences are compared by means of simula-

tion, i.e., the method yields a family of filters which have the

smoothing property, and one is selected experimentally.

10. COMPUTATIONAL METHOD. Let the filter, approximating the

optimal filter (15) or (18), be

2
dm, = F.(m,...,m )dt+K, (m,...,m )dt/o

=5) N (dy—E(m,.--,mn)dt)Gi(m"'"mn)/°2

2 2
dm = F dt+K,dt/o +(dy-Edt)c /o,

where E = E(m,...,mn) is the approximation of Etg, ete.
Since there does not appear to be a finite device which

will generate either an exact Wiener process, or solve (25) exactly

if such a process were available, two approaches to the numerical

realization of the filter (25) are outlined, The first approach
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supposes a type of discrete time filter; the second is essentially
equivalent to the supposition that Wy is replaced by a suitable

wide band process.

APPROACH 1. Suppose that observations are taken at the discrete
times t =nA, n=l,..., where A 1is small, and suppose that the
observation Oy can be approximated by the expression odw ., +

: (n+l)A né
g(anQA;, or by an (csdws+ g(xs)ds). Divide the computation

of (25) into 2 parts. In the time between observations, the dynamics
alone are involved and dm, = F;dt, dm = F,dt. To compute

mi,nAﬁO- mi,nApO’ the change in the moment due to the observation

at nA, use the discrete approximation to (25)

K.A
i 2

o
where the arguments of K:» E and Gi are evaluated at nA-Q.
2 2 1l mnA 2

= i 2
If o depends on s, replace o by A‘f(n-l)A? (s)ds in (26).
The procedure is consistent with the interpretation of (25) based
on the discussion of the limit properties of (3), and will
converge to the correct solutions of (25) (in some statistical

sense) as A - 0.

APPROACH 2. Suppose, temporarily, that g(xt) is available, and
that an approximation to the sample paths of (25) is desired when

the values of W b= l,..., are available. Write (25) as
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2 2
27 dm, = Fidt+Kidt/cr +(g(xt)dt-Edt+cdw)Gi/c

and similarly for dm. By those results of [10],[11],{12],{13] which are
presented in Section 2 (here B = [Gl/b,...,Gn/G]'), the ordinary
equation (28) is an approximation to (27). 4 is equal to

[W(n+l)AfwnAg/A‘ in the interval [nA, (n+l)a).

2 1 oG >
(28) h, = F,+K./0"- =— 2 G, —= + (g-E+0q)G./0".
i i1 2 k i
20° k Bmk

Finally, (28) is equivalent to the supposition that the observation
is really yt = g(xt)+cqt for a wide band Gauésian process q,.
Approach 2 appears to be advantageous from the computational point
of view and (the vector version) is used in the simulation.

More sophisticated, and hopefully better, numerical

methods are being studied.

11. A FILTER FOR THE VAN DER POL EQUATION. The system of the

simulation is the Van der Pol oscillater

Xl = X2 € = 3
* 2

(29) Ry = -x; + exy(1-x])
dy ='xldt+odw .

. t t b
Define pl =E xl’ py = E X5 pij =B (Xi-Pi)(Xj~Pj): pijkt =

t
E - . - = - . . . . [
(%, Pl)(xj pj)(xk pk)(xl p,). For simplicity of design of the
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filter, set the estimates of pijk equal to zero. Then, by

(13),

2
dp, = pydt + (dy-p,dt)p, /o

(30)
= 2 + po ydt+(a at) /c2
dp, = (-py*€py)dt-€(2p, 50 +0, D,*D s ¥y-p13t) Dy,
) 2,2
byy = -P1/0+ 2pgp
(31) ., = -P..D /02+p -p,,-€[-p ot + 42 1
12 11P12 2p~ P17 %L =P10"P1112"P1 0P 7 P 1P1 P2

. 2,2 2
Ppp = ~P1p/0 ~2p15-2€[-Dyo*Py 150D Pos 2P 0o o]

If pijk were not set equal to zero, then (31) would
contain an observation term. (30) and (31) represent the filter
and a substitution for Pi112 and Pq122 is required. (Note that,
if a Gaussian P were used, then Piy00 = plip22+2p§2 and
Piy1o = 5pllpl2') Since (31) does not depend on the observation
noise, and the. coefficients of the noise in (30) depend on pij’
then the vector version of (28) (see also (10),(11)) is exactly
(30) and (31) with a division by dt and § replaced by g +0q;

i.e., no correction terns are needed if the observation noise is

'wide band®.

12, TWO DIMENSIONAL MOMENT SEQUENCES. The apparant lack of a

general two dimensional analog of (23) and (24) suggests the use of



22

the limited class of two dimensional moment sequences which can be
derived from (23),(24). We shoose a special subclass. Let Y1595

be independent random variables with corresponding moment sequences
Sy, = (u,ul,...) and Sy, = (V,Vv5,...). (23) and (24) hold for Sy,
and Sy,. Define the distribution, and moment sequences of x by

the orthogonal transformaion

a 'J 1-32
-V],a? a

Since it is supposed that pijk = 0, we may let Uppq = Vopel = 0,

n=0,1,... . From (32)

(vg—ug)a J1-62

P12 =
2 2
(33) P, =au,+ (1-a )v2
2 2
Poo = (1-a )u2 +a v,
_ 3,2 [, .2/5.2 2,3/2
Piy1p = @ '/l-a u, +3a N 1-a (2a -l)ugve-a(l-a ) v,
(34)
2 2 L 2 2 2,2 2 2
Piypp = & (1-a7)w+la -ha (1-a7)+(1-a7) TJuyvyra (1-a7)v)
To compute pijkl’ for the filter (30),(31), make the admissible

2 2 2 :
substitutions U, = bu,, vy, = ¢V, where b 2 1, ¢ 2 1, determine

the filter and are to be chosen. Via (33) and (34), pij and

P are specified by 3 quantities, Uu,,V, and a. Conversely,

ijke




23

given all pij’ the u,, v, and a can be computed, then u,, v, can

be calculated and, finally, P1112 and Py1o2 obtained.

. 2
Define T = pll+P22 = 2+v2, A = P11p22'p12 = U,V

Then

T +J17kA /2

u, =
vy = T-u2
a” = (py,-vp)/(uy-v,)

/ 2
sign a = sign (vg-ug)a l-a” = sign p, -

Note that, if u, = Vo, then a 1is not important and Py = Py =

u = 0.

o = Vo Ppp

15. NUMERICAL DATA. A REMARK ON THE METHOD. The methods described

in Sections 7 and 9 do not account for the initial density P(x,0),
which may be part of the problem data. Consistency with the given
P(x,0) requires that %(X,O) = P(x,0), or that the chosen moment
sequence coincides with that of P(x,0) at t = 0. For the moment
method, this implies that the b, ¢ of Section 12 should be functions
of time, whose initial values are determined by P(x,0), and whose
later values are chosen for quality of the filter. The procedure
taken here is not consistent with these statements. The goal of

the numerical work is the study of general qualitative properties
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of the filters as they appear in the several computer runs, rather
than to do a statistically correct evaluation of a filter.

The values of b, ¢ are fixed for the entire run. The
results stand by themselves, but if desired, it can be supposed that
either P(x,0) is consistent with the choice of b, c¢, or take the
following 'practical' rationalization: Data on P(x,O) may not be
reliably known. Although the filters of Section 4 are optimal for
a specific Baysian problem formulation, the Baysian approach can
be considered as merely a suggestive device used to obtain a
family of possibly useful filters for some non-Baysian problem, and
the initial data adjusted for convenience of the filter. In any

case, the filters must be checked under a variety of conditions.

DYNAMICS OF THE SIGNAL. The signal system paths are plotted in
Figures 1,2 and the limit cycle in Figure 6. Roughly speaking,
each half cycle has 2 parts; a nearly linear part in which the
velocity is nearly constant at about .26, and a non-linear part in
which the velocity changes by a large amount in a relatively short
time. The non-linearity of the system, as reflected in these large
velocity changes, helps explain some of the salient points of the

data. Errors in the estimates change rapidly during this period*.

N :
For example, the pair of initial conditions of the Van der Pol
equation (xl = 1.59, x, = -.32), (xl = LT,x, = -.28) are mapped

igtottzee?air (x, = 63,x%, = -1.1L2),(xl = -.38,x, = h.24), resp.,
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A '"linearized' filter was simulated by dropping the Mth

moments in (31)*, but the estimates of Pis Dyy Were, in all cases,
extremely unstable and were completely useless within a fraction

of a unit of time.

DATA. All the runs for the conditions p,;(0) =5, plg(O) = 0,

2 .
p22(0) =20, 0 =4, b = ¢ =3 (corresponding to a Gaussian density)
were rather similar and will be described in detail™™. Note the
relatively large noise (virtually masking the signal) and the large
initial values of ps;-

Refer to Figures 1-3. The large values of b and ¢,
and corresponding large initial value of Py100s caused Poo to
decrease extremely rapidly at first. O decreased rapidly to about
0.4 and remained there for about 4 units of time. Initially, the
filter is essentially tracking a moving point which, it supposes,
moves with a constant wvelocity. By the start of the second half
cycle, the estimates are rather good, and the magnitude of the
errors are consistent with the values of the pi.. The initial
velocity estimate of 0.4 is consistent with the estimate that the

initial position is about 2 and is slowly decreasing. The signal

point spends most time in the nearly linear region (where |x2|x .26).

»*
This is equivalent to expanding the optimal filter and retaining

only the first and second moments.
*

*
This sequence of runs was generally the best.
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By t = 0.4, the filter has decided that one of these nearly linear

regions is a much more likely location of x, than the otherj; the

t

large rate of decrease in Poo is due in part to the fact that X5
changes relatively little in the nearly linear region, and the
initial estimate p, % 0.4 is very likely an effect of the
averaging of the dynamics (a desirable effect). The averaging at
this time should (it seems) suppress large changes in the velocity

(p2), yet follow the moving x., and catch up with it in the nearly

1

linear regions. To do this, the required velocity changes (in p2)
must be spread out in time. See Figure 2.
The shift to the right,of the first peak of 129 is

possibly due to an initial conservatism; i.e., initially, Piq is

large and the filter 'requires' more evidence concerning the change

of the 'nearly linear' region in which x is located before moving

1

pl rapidly to a different region. This effect decreases in later

cycles (provided that the estimates b, are close to xt)*

When the estimate |p2l increases rapidly, the errors are
presumed to increase, and the variances pij changes accordingly.

When pt changes rapidly, the observations contain more information

on the values of Xy since the observation component X,-Py is

*

For smaller b,c the first peak of Dy wusually occurs to the

left of that in Figure 2. As b,c decrease to 1, the corresponding
density degenerates to one concentrated at 4 points (2 on y.axis,

2 ony axis), and it appears that, for the same initial variance,

the fiiter supposes that more information concerning the true location
of Xy is available in the observations.
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larger. The variances |Iﬁjl all increase,during the periods of
rapid increase in by, to take advantage of the added information

in the observation (recall that the observation effects on pi are
proportional to pli)' The depression at 8.2 in the P,y curve of
Figure 3 is due to the fact that Poy is close to a local maximum
at this time (see also Figure 6, for the same run), and the rate

of change of the estimate of velocity is near a local minimum;

hence, the 'magnification’ of estimate errors is near a local minimum
(i.e., loosely speaking, two points on the phase space path of the estimate
which are close at t = 7.5, are further apart at t = 8, are closer
at t = 8.3, and spread again at t = 8.6, etc.).. The two peaks of

n,

5o in the interval [7.5,8.5] appear to be desirable (and intuitively

expected in the optimum filter).
. 2 A
For t greater than about 0.5, and in all runs, Ei2 ~ PllIég
(correlation coefficient < 1). This is not completely understood,
but is one of the most important features of the data. While not

expected in the optimal filter, it does serve useful purposes.

2
Pip ~ P Ppp means

(J (e Ppy) (g - ) B(x, 8) )

% [ty -P) TB(%, £)ax [(p,-Ppy) B(x,t)dx

which, implies that (Xlt_plt)= k(x2t-p2t); in particular, the
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filter supposes that the probability is concentrated on a line
(in phase space) through p, with slope (p22/p11>l/2 sign PO

Figures 4,5 give data on another run for large time, and
the same b,c¢ and initial pij values. This run was not quite as
successful as that of Figures 1,2,5,6, but illustrates some important
properties of the filter. 1In Figure 4 there are plotted several pairs of
corresponding X 5Py points of one cycle. The letters identify values of
X, 5Py at the same time. The arrows indicate the general direction (the
direction of peoints on the graph is in the same quadrant as the
true direction) of the effects of the bias term pli(xl-pl) in the
observation at the indicated times. The regions of positivity and
negativity of p are also indicated. Although not plotted, the

12

pij pattern of variation was not too much different from the pattern
in the last part of Figure 3, so that the observations still do
have a corrective effect. In Figure 5,parts of two cycles of the same run

are plotted. The estimates on the last cycle are better, and the path of
the estimate on the last cycle is closer to the limit cycle.
Putting Figures 4,5,6 together, the following picture
emerges. The filter is initially conservative and averages the
dynamics considerably. The path (in phase space) of the estimate
(as a trend) is an outward spiral tending slowly to the limit
cycle of the oscillator. At the nearly linear regions, the estimates

are good, and degenerate when the velocity |p2| or |x increase

ol

rapidly. The observation bias pij(xl-pl) serves as a corrective

force. The change in the velocity Ps is smaller than the change
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in X5s since when P tends to change rapidly, the increased pi

J
and consequent averaging of the dynamics holds the rate of change

down. This conservatism decreases as time increases. Since Py > o,
the instantaneous effect of the non-noise part of the observation,
is to reduce the error (xl-pl).

Figure 4 illustrates the desirability of the change in
sign of P15 at certain points, so that the bias term (xl-pl)p12
has a corrective effect. Consider points d,e,f. At all three

points, x; >p,, but between e and f, the sign of (Xg'Pg) changes,

1
and it Seems reasonable that P should also change sign in this
region, which it does.

The system is rather non-linear, and it is hard to compare
the results to any absolute standard. (Also, there is no other filter,
suitable for this problem, known to the author.) The asymptotic
properties are unclear, although it is suspected that the estimates for
the described runs would converge to the true values. Several
runs were less successful, in particular for 02 = 4 and smaller
values of b,c (for larger 02, the data suggest that b =c¢ =3
is not as good as some smaller values), but the general features
described above were retained, except that the sign of Pio differed
a little more often from that which would allow plQ(Xl_pl) to
instantaneously decrease the error in the velocity estimate.

A number of specific directions for further investigation

. . 2
are suggested. The degeneration of the correlation pl2/pllp22 to
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1 implies that only one of the ¥ (Section 12) was non-zero, and
suggests that the method of Section 12 be rerfated for vy with
independent but skew distributions. The specification of non-zero
3rd moments for the v would allow the introduction of two
independent 3rd moments into the filter, with the corresponding
extra filter equations., In the event that the degeneracy of the
correlation still obtained, the skewness would seem to provide for

a more natural averaging of the dynamics. Also, the X, (in Section
12) could be suitable non-linear functions of the Vye An analysis
of the qualitative asymptotic properties of the filter equations
(29),(30),(31) could be attempted, but this seems rather hard. It
is desirable to simulate another non-linear problem, and to obtain
more data on the example of the paper in order to improve the under-
standing of the effects of various types of averaging assumptions.
The relation between the quality of the filter and the sign of Pip
must be further clarified for the exsmple of the paper. A careful
study of the evolution of the true moments, when there are no ob-
servations, should yield some useful guides. In fact, some computa-
tions of these moments have suggested that the properties of-the
covariance estimates are generally correct -- except for the pos-
sibility that at their 'low' points, they are too small. Finally,
it would be quite helpful to have independent estimates of the
properties of the optimal filter (e.g., useful bounds on the variance

of the optimal pi).




APPENDIX 1. DERIVATION OF (15). For brevity, a formal derivation

is presented and is based on Itd's calculus for differentials of
functions of solutions of stochastic differential equations. Let

dx = f(x)dt + u(x)dz. Then, the stochastic differential of a suitable

function g(x) is

1
= ' -—
(A-1) dg = glax + > 2z gxixjdxidxj

where dxidxj is written for E[dxidlext] = % uijukjdt (u =

{u..}). Then, w.p.l. with the It§ interpretation of the integral
1d

ftfdzs, [71,[8] (see these refe?ences and also [6] for the defini-

t ~ .
tion of the stochastic integral [ fdzs), It6's Lemma yields

t
e(x,) - e(x) = [ dgg .

Define m = Etxj and m, = Et(xj-m)l; j is fixed.

Then, via a formal application of It3's Lemma,

am, = a | (xj-m)iP(x,t)dx

-dm f i(xj—m)i_}P(x,t)dx
(a-2)

, (am)%i(3-1)

i-2
5 I} (xj—m) P(x,t)dx

+

f (xj-m)idP(x,t)dx -if (xj-m)i_ldmdP(x,t)dx ,
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2 . .
where (dm)~ and dmdP are to be replaced by their expectations

conditioned on m,, P(x,t). Recall that (13), (14),

-1
dEtxj = Etfj(x)dt + (dy-Etgdt)' % (Etng-EtgnD

dm

(A-3)
t -l
L*¥Pdt + P(dy-E gdt)' X (g-E g)

dp
and that, formally, for suitable q(x),
] a(x)1*P(x,t)dx = [(La(x))B(x,t)dx.

Substituting (A-3) into (A-2) gives

-1
o5 t
dm, = dt[-imi_lEth.(x) + l(;—l) mi_g(Etng-Etgm)'Z (Etng-E gm)
. -1 .
(A-4) + EtL(xj-m)l-i(Etng-Egm)'Z Et(g-Etg)(xj—m)l_l}

-1 .
(dy-E'gat)' 2 (~in; (B ex,-Egn)+E"(e-E €) (x;om)") .

+
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APPENDIX 2. DISCUSSION OF THE SIGNIFICANCE OF A SELECTED b,

A loose and formal description of an alternative and suggestive
view of the significance of P will be given for a scalar problem
with no observations. The observation terms can be added to the

procedure. The limits on all integrals are ¥ o, x is a scalar and

subscripts x, t denote differentation., Let

(B-1) P, = L*P L = (L*)* , M(x,0) given

where L 1is given in Section 4. Suppose that all @(x) of the sequel
are such that the operations have meaning, and that %(x,t) and

P(x,t) are such that all terms in (B-2) go to zero as |x| — =,

B, £)£(x)0(x)
(B-2) (P(x,8)v" (%)) 9(%)

2
(B(x,£)v2(x) Yo, (x)
Then if P(x,t) is the solution to (B-1), for any 9(x), (B-3) holds.

(B-3) [P (x,t)9(x)ax = [(I*P(x,t))o(x)dx = [P(x,t)Ip(x)dx

(B-3) implies that

d t t
d_tE P(x) =E Ip(x) .

Let [@i(x)] be a complete (in a suitable sense) family.
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Then under suitable conditions on P(x,0) and L, the procedure of
Galerkin [26], [27], can be used to obtain a sequence Pn(x,t)

n
converging to P(x,t): Let Pn(x,t) = 2 a?(t)@i(x) and choose

1

the a?(t) so that
(B-4) f[Pi(x,t)-L*Pn(x,t)]Qi(x)dx =0, 1i=1,...

(B-4) gives a set of linear differential equations for the a?(t),
and the initial conditions of this set are determined by P(x,O).
A large n may be required for Pn(x,t) to be 'close' to P(x,t)
but, in any case the 'error' Pf:-L*Pn is orthogonal to Ql(x),...,mn(x).
Now write P for any approximation to P. At least
formally, P - ?(x,m,rg,...,rn) may be non-linearly parameterized
where m = [ xﬁ(x,t)dx and T, are other parameters (there are no
exact results for the non-linear parameterization). Equations for
n and ii are obtained by imposing the condition that the error

%t-L*% be orthogonal to @l(x),...,wn(x), where @l(x) = Xx. Then

(B-5) 0 = f[fk-L*?]@idx = f%{pidx - JB(1p)dx
or
d ~t ot t
T E® =E®;, , E9, = [Po.dx.
If ¢, =x and r, = ﬁt i=2 th B i tions
1 =E®,, i =2,...,n, then ( -5) gives equa
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for the fi. Otherwise, the ii are obtained from

ffkmidx = Z rij}‘¢idx + M f?d?idx .
J J
For any given form %(x,m,re,...,rn) there are many
sets of _{¢i}, ®, = %, which can be used, and the equations for

the r, depend on the {Qi}. For example, consider

e

L]

"
-

H

=m

= (2Fr251/2exp-(x-rl)2/2r

el
|
gad
>
-
2]
=
-
=
o
-
I

2 .

(B-7)

e
0
4
2]
2]

2
Here the error is orthogonal to x, x and (x-rl)g. Now, let

®, = xu, then

e
1]
H
+
2]

(8-8)

e

N
ryrpll + 2 ]
r1*ts

2
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Owing to the use of xlL in lieu of xg, the computation of (B-8)
weighs the error at larger values of |x| more heavily. The use
of 9, = (x-rl)u gives (B-7).

The derivation with the inclusion of observation terms,
is similar. The author has not been successful at exploiting the pos-
sibilities offered by the various choices of [$i}. In the text r;=m,
i 2 2 and the observation terms are included. The derived equations
for the dmi and dm are those which would be obtained by the
above procedure (with observations) for @l = X, ¢i = xi, iz 2,
The estimates m_ and m,, are such that the function B —L*ﬁt

t t t

is orthogonal to xl, i=1...,n, for each t, where

P = g(x,mt,...,mnt) (the t subscript on m,m,, denotes time.)
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CONCLUSION

A class of finite dimensional approximations to the
optimal filter has been discussed. An analysis would be difficult,
but the procedure is suggestive and the numerical results indicate
that some of the approximations have rather desirable properties.
The paper is, in a sense, exploratory. Since there do not appear
to be alternative filters for the non-linear problems of concern
here, comparison of our results 1s impossible. Linearization appears
to be useless for our problems ("linearized' filters 'blew' up).

The problems of realizing useful non-linear filters for the class
of signal and noise processes considered here are difficult, but
the numerical results indicate that the methods (and problems)

isolated here merit much further study.
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